Expanding Domain Sentiment Lexicon through Double Propagation
نویسندگان
چکیده
In most sentiment analysis applications, the sentiment lexicon plays a key role. However, it is hard, if not impossible, to collect and maintain a universal sentiment lexicon for all application domains because different words may be used in different domains. The main existing technique extracts such sentiment words from a large domain corpus based on different conjunctions and the idea of sentiment coherency in a sentence. In this paper, we propose a novel propagation approach that exploits the relations between sentiment words and topics or product features that the sentiment words modify, and also sentiment words and product features themselves to extract new sentiment words. As the method propagates information through both sentiment words and features, we call it double propagation. The extraction rules are designed based on relations described in dependency trees. A new method is also proposed to assign polarities to newly discovered sentiment words in a domain. Experimental results show that our approach is able to extract a large number of new sentiment words. The polarity assignment method is also effective.
منابع مشابه
A Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملSentiment Analysis on Twitter through Topic-Based Lexicon Expansion
Supervised learning approaches are domain-dependent and it is costly to obtain labeled training data from different domains. Lexiconbased approaches enjoy stable performance across domains, but often cannot capture domain-dependent features. It is also hard for lexiconbased classifiers to identify the polarities of abbreviations and misspellings, which are common in short informal social text b...
متن کاملOpinion Word Expansion and Target Extraction through Double Propagation
Analysis of opinions, known as opinion mining or sentiment analysis, has attracted a great deal of attention recently due to many practical applications and challenging research problems. In this article, we study two important problems, namely, opinion lexicon expansion and opinion target extraction. Opinion targets (targets, for short) are entities and their attributes on which opinions have ...
متن کاملExpanding Opinion Lexicon with Domain Specific Opinion Words Using Semi-Supervised Approach
Opinion words as well as opinion phrases and idioms are very useful in sentiment analysis. All these terms together build opinion or sentiment lexicons. Therefore, opinion lexicons are large lists of terms that encode the sentiment of each phrase within it. Generally, to create such a lexicon automatically, high-precision classifiers use known sentiment vocabulary, e.g. the prior polarity of an...
متن کاملCross-lingual Sentiment Lexicon Learning With Bilingual Word Graph Label Propagation
In this article we address the task of cross-lingual sentiment lexicon learning, which aims to automatically generate sentiment lexicons for the target languages with available English sentiment lexicons. We formalize the task as a learning problem on a bilingual word graph, in which the intra-language relations among the words in the same language and the interlanguage relations among the word...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009